On The Density of Binary Matroids Without A Given Minor
نویسنده
چکیده
This thesis is motivated by the following question: how many elements can a simple binary matroid with no PG(t, 2)-minor have? This is a natural analogue of questions asked about the density of graphs in minor-closed classes. We will answer this question by finding the eventual growth rate function of the class of matroids with no PG(t, 2)-minor, for any t ≥ 2. Our main tool will be the matroid minors structure theory of Geelen, Gerards, and Whittle, and much of this thesis will be devoted to frame templates, the notion of structure in that theory.
منابع مشابه
The Binary Matroids with No 4-wheel Minor
The cycle matroids of wheels are the fundamental building blocks for the class of binary matroids. Brylawski has shown that a binary matroid has no minor isomorphic to the rank-3 wheel M(1f3) if and only if it is a series-parallel network. In this paper we characterize the binary matroids with no minor isomorphic to M (if;.). This characterization is used to solve the critical problem for this ...
متن کاملOn two classes of nearly binary matroids
We give an excluded-minor characterization for the class of matroids M in which M\e or M/e is binary for all e in E(M). This class is closely related to the class of matroids in which every member is binary or can be obtained from a binary matroid by relaxing a circuithyperplane. We also provide an excluded-minor characterization for the second class.
متن کاملMaximum Size Binary Matroids with no AG(3, 2)-Minor are Graphic
We prove that the maximum size of a simple binary matroid of rank r ≥ 5 with no AG(3, 2)-minor is (r+1 2 ) and characterize those matroids achieving this bound. When r ≥ 6, the graphic matroid M(Kr+1) is the unique matroid meeting the bound, but there are a handful of matroids of lower ranks meeting or exceeding this bound. In addition, we determine the size function for nongraphic simple binar...
متن کاملTowards a splitter theorem for internally 4-connected binary matroids II
Let M and N be internally 4-connected binary matroids such that M has a proper N -minor, and |E(N)| ≥ 7. As part of our project to develop a splitter theorem for internally 4-connected binary matroids, we prove the following result: if M\e has no N -minor whenever e is in a triangle of M , and M/e has no N -minor whenever e is in a triad of M , then M has a minor, M ′, such that M ′ is internal...
متن کاملOn the Excluded Minors for the Matroids That Are Either Binary or Ternary
The classes of binary and ternary matroids are both relatively well understood as is their intersection, the class of regular matroids. This paper considers the union M of the classes of binary and ternary matroids. M is a minor-closed class and the focus of the paper is on determining its set of excluded minors. It is conjectured here that this set of excluded minors unique matroids that are o...
متن کامل